首页> 外文OA文献 >High-Quality Facial Photo-Sketch Synthesis Using Multi-Adversarial Networks
【2h】

High-Quality Facial Photo-Sketch Synthesis Using Multi-Adversarial Networks

机译:使用多对抗性的高质量面部照片 - 草图合成   网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Synthesizing face sketches from real photos and its inverse are well studiedproblems and they have many applications in digital forensics andentertainment. However, photo/sketch synthesis remains a challenging problemdue to the fact that photo and sketch have different characteristics. In thiswork, we consider this task as an image-to-image translation problem andexplore the recently popular generative models (GANs) to generate high-qualityrealistic photos from sketches and sketches from photos. Recent methods such asPix2Pix, CycleGAN and DualGAN have shown promising results on image-to-imagetranslation problems and photo-to-sketch synthesis in particular, however, theyare known to have limited abilities in generating high-resolution realisticimages. To this end, we propose a novel synthesis framework called Photo-SketchSynthesis using Multi-Adversarial Networks, (PS\textsuperscript{2}-MAN) thatiteratively generates low resolution to high resolution images in anadversarial way. The hidden layers of the generator are supervised to firstgenerate lower resolution images followed by implicit refinement in the networkto generate higher resolution images. Furthermore, since photo-sketch synthesisis a coupled/paired translation problem where photo-sketch and sketch-photo areequally important, we leverage the pair information in the CycleGAN framework.Evaluation of the proposed method is performed on two datasets: CUHK and CUFSF.Both Image Quality Assessment (IQA) and Photo-Sketch Matching experiments areconducted to demonstrate the superior performance of our framework incomparison to existing state-of-the-art solutions. Additionally, ablationstudies are conducted to verify the effectiveness iterative synthesis andvarious loss functions.
机译:从真实照片中合成面部草图及其逆过程是经过充分研究的问题,它们在数字取证和娱乐中具有许多应用。然而,由于照片和草图具有不同的特性,因此照片/草图合成仍然是一个具有挑战性的问题。在这项工作中,我们将此任务视为图像到图像的转换问题,并探索最近流行的生成模型(GAN),以从草图生成高质量的逼真的照片,并从照片生成草图。诸如Pix2Pix,CycleGAN和DualGAN之类的最新方法已在图像到图像转换问题,尤其是照片到草图合成方面显示出令人鼓舞的结果,但是,已知它们在生成高分辨率逼真的图像方面的能力有限。为此,我们提出了一种新颖的合成框架,称为使用Multi-Adversarial Networks(PS \ textsuperscript {2} -MAN)的Photo-SketchSynthesis,它以对抗性方式迭代生成低分辨率到高分辨率图像。监督生成器的隐藏层以首先生成较低分辨率的图像,然后在网络中进行隐式细化以生成较高分辨率的图像。此外,由于照片素描合成是一个耦合/成对的翻译问题,其中照片素描和素描照片同等重要,因此我们在CycleGAN框架中利用了配对信息,并在CUHK和CUFSF这两个数据集上进行了该方法的评估。进行了图像质量评估(IQA)和照片素描匹配实验,以证明我们的框架与现有的最新解决方案相比具有出色的性能。另外,进行消融研究以验证有效性,迭代合成和各种损失函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号